
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2003; 42:717–740 (DOI: 10.1002/�d.550)

Numerical simulation of turbulent �ow through series stenoses
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SUMMARY

The �ow �elds in the neighbourhoods of series vascular stenoses are studied numerically for the
Reynolds numbers from 100 to 4000, diameter constriction ratios of 0.2–0.6 and spacing ratios of
1, 2, 3, 4 and ∞. In this study, it has been further veri�ed that in the laminar �ow region, the nu-
merical predictions by k–! turbulence model matched those by the laminar-�ow modelling very well.
This suggests that the k–! turbulence model is capable of the prediction of the laminar �ow as well
as the prediction of the turbulent stenotic �ow with good accuracy. The extent of the spreading of the
recirculation region from the �rst stenosis and its e�ects on the �ow �eld downstream of the second
stenosis depend on the stenosis spacing ratio, constriction ratio and the Reynolds number. For c1 = 0:5
with c26c1, the peak value of wall vorticity generated by the second stenosis is always less than that
generated by the �rst stenosis. However, the maximum centreline velocity and turbulence intensity at
the second stenosis are higher than those at the �rst stenosis. In contrast, for c1 = 0:5 with c2 = 0:6,
the maximum values at the second stenosis are much higher than those at the �rst stenosis whether for
centreline velocity and turbulence intensity or for wall vorticity. The peak values of the wall vorticity
and the centreline disturbance intensity both grow up with the Reynolds number increasing. The present
study shows that the more stenoses can result in a lower critical Reynolds number that means an earlier
occurrence of turbulence for the stenotic �ows. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The occurrence of turbulence in the arteries has long been realized [1]. The typical Reynolds
number range of blood �ow in the human body varies from 1 in small arterioles to
approximately 4000 in the largest artery, the aorta [2]. In the absence of stenosis, the blood
�ow is usually laminar since the fully developed pipe �ow does not experience transition
to turbulence until the Reynolds number based on diameter and average �ow speed exceeds
about 2300. However, the obstruction presented by moderate and severe stenosis can lead to
a highly disturbed �ow region at the downstream of the stenosis. These disturbed �ows may
either remain laminar or undergo transition to turbulent �ow, depending upon the speci�c
�ow conditions through the stenosis and the geometry of the stenosis.
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Turbulence represents an abnormal �ow condition in the circulation and thus the develop-
ment of turbulent �ow has important clinical consequences. Numerous experimental studies
for the steady turbulent �ow in arteries have been carried out by many researchers, such as
Clark [3], Deshpande et al. [4] and Saad et al. [5]. Deshpande et al. [4] performed the mea-
surements of turbulent �ow through a stenotic tube with a contoured 75% stenosis for a range
of relatively high Reynolds number from 5000 to 15 000 with a laser Doppler anemometer.
These studies have shown that the transitional �ow or turbulence can be expected even in the
artery with mild stenosis.
Numerical simulation of the stenotic �ow o�ers a non-invasive means of obtaining detailed

�ow characteristics which are sometimes very di�cult to obtain experimentally, such as wall
shear stress distributions. The blood �ow in the arteries mainly lies in the low Reynolds
number range. Under this �ow condition, it is more often seen that the turbulent, laminar and
transitional regions coexist in the same stenotic �ow �eld commonly with large separation
bubble. As Wilcox [6] pointed out, the blood �ow through the arterial stenosis is particularly
di�cult to simulate among the various separated-�ow applications. Actually, most numerical
simulations of stenotic �ow have been con�ned to laminar �ows with low Reynolds numbers.
Deshpande [7] numerically predicted the turbulent �ow in arterial stenosis with very high
Reynolds number up to 15 000. In fact, however, such high Reynolds numbers are unrealistic
when the human circulatory system is considered. Ghalichi et al. [8] presented the numerical
results for the transitional and turbulent �ow through the moderated and severe arterial stenosis
over a range of physiologically relevant Reynolds number from 50 to 2000 using the FIDAP
�nite element software. It was established that the laminar �ow model overestimated the vortex
length when the �ow becomes transitional or turbulent. Ghalichi et al. [8] used the Wilcox’s
standard version of the k–! turbulence model [9] that is di�erent from the Wilcox’s low
Reynolds number version of the k–! turbulence model [10] although it was claimed that the
low Reynolds number k–! turbulence model was used. Ghalichi et al. [8] drew the conclusion
that the Wilcox’s k–! turbulence model is suitable for blood �ow studies in certain areas of
the arteries where both laminar and transitional=turbulent �ows coexist.
Multiple stenoses in diseased vascular tube may occur because of the formation of the

primary stenosis that can result in downstream circulation �ow. The downstream circulation
in time will accumulate particles and forms a secondary stenosis. As a result of the secondary
stenosis, a circulation zone will form at its downstream, thus resulting in a third stenosis,
etc. The e�ects of these stenoses result in a series of sequence constrictions. An initial study
through double stenoses was presented by Lee [11, 12] just for the laminar �ows. Damodaran
et al. [13] also numerically researched the steady laminar �ows through the multiple constric-
tions in tubes for a range of Reynolds number 50–250. To our knowledge, however, none
have considered the turbulent �ows through the series stenoses.
The turbulent �ow in a tube with axisymmetric stenosis is of great interest because of its

relation to human vessels and the possibility of diagnosing the stenosis in its earlier stages.
In the present study, a detailed analysis on the dynamics of the �ow in a tube with double
bell-shaped stenoses was presented with the relatively low Reynolds numbers from 100 to
4000 considered. Actually, it is realistic to consider the Reynolds numbers less than 4000
when the human arterial �ows are simulated. The primary e�ort is to provide a comprehen-
sive treatment for the steady �ows through the realistically shaped stenoses by obtaining �ow
�eld solutions at various Reynolds numbers to ensure that the full range of turbulent �ow is
covered for the arterial �ow. The dynamics of the �ow describing separation, reattachment,
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the formation of recirculation eddy and the distribution of the turbulent kinetic energy are
revealed.
In the present work, the stenotic �ow �elds in an arterial tube was simulated numerically

using the method which had been developed and validated in Lee et al. [14, 15] for solving
the steady and unsteady incompressible Navier–Stokes equations and k–! turbulence model
equations in a two-dimensional, curvilinear co-ordinate system. Compared with the k–! tur-
bulence model, the K–� model is easier to integrated through viscous sublayer since it does
not require any additional low Reynolds number damping functions. The model equations are
mathematically simpler and less sti� near the walls. From the point of computational imple-
mentation, therefore, this model appears especially attractive. More importantly, it has been
designed to achieve more accurate predictions for adverse pressure gradient �ows [6].

2. GOVERNING EQUATIONS AND NUMERICAL METHODS

As shown in Lee et al. [14, 15], the arti�cial compressibility approach presented by Chorin [16]
initially just for steady �ow has been developed to solve both steady and unsteady laminar and
turbulent �ows. In the present study, the arti�cial compressibility method was only used to
solve steady turbulent �ows. This involved modifying the governing equations to make them
fully hyperbolic by adding an unsteady term to the mass conservation equation. The steady-
state solution is not altered by modifying the equations in this way. Basing on Boussinesq’s
hypothesis, for axially symmetric �ow of incompressible and Newtonian �uids, the Reynolds-
averaged Navier–Stokes (RNS) equations with the modi�cation of arti�cial compressibility
can be written as
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Here the co-ordinate variables (r; z) are de�ned in the cylindrical co-ordinate system; u and
v are the velocity components in z and r directions, respectively. �t is the non-dimensional
turbulent eddy viscosity which can be evaluated by the turbulence model. � is an arti�cial
compressibility parameter. In order to satisfy the divergence free condition, the continuity
equation having a pseudo-compressibility term is always solved iteratively in time until the
pseudo-compressibility term vanished. The whole set of di�erential equations are physically
unbalanced until the steady state solution is reached.
When turbulent �ows are considered, the governing equations of Wilcox’s k–! turbulence

model, in which k and ! are the turbulence kinetic energy and speci�c dissipation rate,
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respectively, are written as follows [6, 9]:
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The eddy viscosity is calculated from

�t =
k
!

(4)

The closure coe�cients for the k–! turbulence model are

�k =0:09; �k =0:5; �!=0:075; �!=0:5; �!=5=9

In the numerical process, the Reynolds-averaged Navier–Stokes equations in the conser-
vation form are usually non-dimensionalized and then expressed in a generalized curvilinear
co-ordinate system with the axisymmetric physical components taken as the dependent vari-
ables as follows:
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In the governing equations, J is the Jacobian of the transformation. U;V are contravariant
velocities in �, �-direction given by
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and
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Similar to the Navier–Stokes equations, the k–! turbulence model equations can also be
non-dimensionalized and re-formulated in a generalized curvilinear co-ordinate system with the
axisymmetric physical components taken as the dependent variables. It results in the following
system of equations in conservation form:
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Here the eddy viscosity is obtained from

�t =Re
k
!

(8)

In Equations (5) and (6), the dimensionless variables r∗= r=r0, z∗= z=r0, u∗= u=u0, v∗= v=u0,
t∗= t=t0, p∗=p=	u20, k

∗= k=u20 and !
∗=!r0=u0 have been used and asterisks are dropped for
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brevity. Re= r0u0=� is the Reynolds number. Here t0 can be got as r0=u0; r0 is the radius of
the tube in�nitely far upstream; u0 is the inlet velocity. In deriving the equations, constant
density were assumed for simplicity.
In the present study, the solution procedure is based on the method of arti�cial compressibil-

ity and uses a decoupled approach to solve the Reynolds-averaged Navier–Stokes equations
and k–! turbulence model equations. Michelassi et al. [17] pointed out that the coupled
solver showed no improvement in convergence or accuracy in comparison with the decou-
pled approach. Furthermore, the decoupled approach will make it easier to select the suitable
turbulence models according to the �ows to be simulated without great modi�cation for the
code. In the current decoupled approach, the Reynolds-averaged Navier–Stokes equations are
implicitly solved to update the pressure and the velocity �eld; then the k–! model equations
are solved together with the new given velocities to compute a new turbulent viscosity �eld.
The above process is repeated until the convergence criterion is satis�ed. The same algo-
rithms can also be applied to solve both the Navier–Stokes equations and the k–! model
equations, including the discretization of the time, convective and di�usive terms. The lower–
upper symmetric-Gauss–Seidel (LU-SGS) implicit algorithm is used as the time integration
scheme for the governing equations because of its e�ciency and stability. When construct-
ing this scheme, the advantages of recent advances in CFD are taken into considerations.
The LU-SGS method is applied with the use of upwind-biased and total variation diminishing
(TVD) scheme. To calculate the convective �ux, an edge-based method is used by calculating
and storing the �ux integrals based on edges. The convective �uxes are discretized by using
the appropriate form of Roe’s �ux-di�erence splitting [15, 18]. The high-order upwind-biased
monotonic upstream schemes for conservation laws (MUSCL) scheme with satisfying TVD
conditions is used to deal with the convective terms, which shows evident advantage and is
helpful to stabilize the computation and increase the convergent speed. This is because the
steep gradients exist in the k, ! �elds. In a typical pro�le of ! normal to the wall, the value
of ! can vary rapidly from 105 (even the value is higher for �ner grids) near the wall to
1 outside the boundary layer. Actually the high-resolution TVD scheme is just designed to
deal with such large gradients. In order to obtain the solutions satisfying TVD conditions, the
MINMOD limiter is herein introduced into the construction of MUSCL scheme. The viscous
terms are evaluated by the second-order central di�erence. The details and validation of the
current numerical method for incompressible �ows can be found in Lee et al. [14, 15].
The arti�cial compressibility parameter � in�uences both the accuracy and the e�ciency of

the calculation. However, it is easy to �nd a range of � for which the code would converge
very quickly. As has been referred to in Lee et al. [14, 15], the current scheme was found not
to be sensitive to the value of the arti�cial compressibility parameter and the present code is
stable for a wide range of �. In the present study, a constant value of the parameter � has
been used. For all cases, the value of � is set to 1 that was found to give a good rate of
convergence and accuracy for all of the problems considered.

3. GEOMETRY AND BOUNDARY CONDITIONS

In the present study, the steady turbulent �ows through single or series stenoses are dealt with.
The geometrical con�guration of the vascular tube with double stenoses with its co-ordinate
system is shown in Figure 1.
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Figure 1. Stenosis geometry used in the steady turbulent �ow analysis.

As shown in Figure 1, L is the length of the tube under consideration; D is the diameter
of the tube having a constant cross section; dc is the opening of the constriction; s1, s2 are
distances of the �rst and second stenosis from inlet plane, respectively; and S is the spacing
between stenoses, S=(s2 − s1).
The geometry of the stenosis may be described by the following bell-shaped Gaussian

distribution pro�le [11]:

f(z)=1− ci exp(−cs(z − si)2) (9)

where ci is constriction ratio (D − dci)=D; cs is a shape constant; z1; z2 are limits of the
�rst constriction and z3; z4 are limits of the second constriction. c1 is the upstream stenosis
constriction ratios de�ned as c1 = (D−dc1)=D; c2 is the downstream stenosis constriction ratios
de�ned as c2 = (D−dc2)=D. In the present study, the constriction ratios c1 and c2 were always
less than 1 and cs was �xed at 4.0.
The double bell-shaped stenosed tube was translated into a rectangular solution domain in

a curvilinear co-ordinate system. The boundary types encountered in the present study were
classi�ed as in�ow, out�ow, solid wall and symmetrical plane. As done in Lee et al. [14, 15],
all boundary conditions were imposed using ghost cells that are two rows of �ctitious cells
next to the boundary. With this concept the boundary �uxes were treated in a fashion similar
to the internal �uxes.
At the in�ow boundary, the non-dimensional velocities were speci�ed by

uin = 1− r2; vin = 0 (10)

The pressure was extrapolated from the interior. k and ! in non-dimensional form were set
at very low levels at the in�ow because the �ows only with relatively low Reynolds numbers
were considered in this study

kin = 1:5I 2Tu
2
in; !in =

√
kin

C1=4
 lin
(11)

where IT is the turbulence intensity, usually taken to be 1%, C
=0:09 and lin is the length
scale given by

lin = min(�ywall; 0:1R0) (12)

Here ywall is the normal distance from the wall and �=0:41 denotes the universal von Karman
constant. For internal �ows, at the out�ow boundary the velocities were extrapolated from
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the interior and a constant static pressure was imposed. The streamwise gradients of k and !
were assumed zero at exit, i.e.

@k
@z
=
@!
@z
=0 (13)

On a solid surface, the usual no-slip condition was applied. The pressure at the wall was
obtained by setting the gradient of the pressure equal to zero at the no-slip wall. The non-slip
wall boundary conditions for the k–! model equations were

k=0; !=
6�
�!yl

(14)

Along the axis of symmetry, the gradients of k and ! in r-direction were assumed zero, i.e.

@k
@r
=
@!
@r
=0 (15)

4. VALIDATION OF NUMERICAL METHOD

The computational results for two test problems are presented to verify the accuracy of the
method. The performance of the present model is evaluated by comparing the results with the
experimental data or numerical results of other researchers.

4.1. Fully developed steady channel �ow

The �rst case chosen to assess the numerical implementation of the current turbulence model
is a fully developed channel �ow at ReH =13750, for which turbulence quantities are avail-
able from the direct numerical simulation (DNS) data presented by Mansour et al. [19]. The
Reynolds number ReH is based on channel height and the average inlet velocity. The com-
putation is performed on a non-uniform grid of 161× 41. The cell centres closest to the wall
surface lies below y+ =1 from the wall. The calculated velocity pro�les in the turbulent
boundary layer are displayed in Figure 2.
In Figure 2(a) and 1(b), an excellent agreement is observed between current velocity pro-

�les with the DNS data and wall functions. The wall functions include the theoretical linear
sublayer law

u+ =y+ (06y+65) (16)

and the theoretical logarithmic law of the wall

u+ =
1
�
log y+ + 5:1 (306y+ and y¡0:1�) (17)

Here y+ =yu
=�, u+ = u=u
.

4.2. Steady turbulent �ow inside a circular tube with a constriction

This case deals with the steady turbulent �ow inside a circular tube with a constriction.
This �ow has been studied experimentally by Deshpande et al. [4]. The geometry of the
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Figure 2. Comparison of the predicted velocity pro�les and the DNS data (Mansour et al.
[19]): (a) fully developed streamwise velocity pro�les; (b) velocity distribution in the

viscous sublayer and in the logarithmic layer.

0 5-5 10 15

Figure 3. Streamlines for the turbulent �ow through a constriction at Re = 15 000.

axisymmetric constriction may be described by the following pro�le:

r
r0
= 1− �

2r0

(
1 + cos

�z
z0

)
; −z06z6z0 (18)

In this case, �= 1
2r0, z0 = 2:0 and the Reynolds number based on the diameter and the average

inlet velocity is 15 000. Deshpande et al. [4] stated that the fully developed u-velocity pro�le
is in reasonable agreement with the power law pro�le (n ∼= 6:4) for Re=15 000. So the
velocity pro�le at the upstream inlet boundary is described by

u= u0

(
1− r

r0

)1=6:4
; v=0

where u0 is the centreline velocity. At the inlet, the turbulence intensity IT in Equation (11)
is taken to be 3% [20].
The computational domain is extended from z-position −6r0 to 16r0. Below presented are

some results computed on a 201× 41 grid, which gives su�cient resolution, as veri�ed by
mesh re�nement. Figure 3 shows the geometrical shape of the computational domain and
streamlines computed by the current method.
The computed separation and reattachment lengths are presented together with the exper-

imental data of Ref. [4] and earlier calculations of Rastogi [21], Melaaen [22] and Zijlema
et al. [20] in Table I. In fact, the separated point and reattachment point were not accurately
measured by Deshpande et al. [4]. The corresponding value in Table I was from the estimation
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Table I. Separation and reattachment locations.

Separation, xs=r0 Reattachment, xr=r0

Deshpande et al. (Exp.) ≈ 0:4–0.5 ≈ 4:0–4.5
Rastogi, 41× 21 1.2 2.4
Melaaen, 52× 22 0.56 4.067
Zijlema et al., 150× 100 0.56 3.50
Present, 201× 41 0.41 4.35

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4

u

r

Present prediction

Experimental data

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4

u

r

Present prediction

Experimental data

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4

u

r

Present prediction

Experimental data

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4

u

r

Present prediction

Experimental data

(a) (b)

(c) (d)

Figure 4. Comparison of computed and measured (Deshpande et al. [4]) axial velocity pro�les at
di�erent axial positions: (a) z = 0; (b) z = 2:5 (c) z = 4:0; (d) z = 11:0.

according to the experimental velocity pro�les of Ref. [4] as was done by Melaaen [22]. From
Table I, it can be seen that the current method gives a recirculation zone in good accordance
with the measurements.
Figures 4–6 present other typical features of this �ow, including the streamwise velocity at

di�erent stations, centreline velocity and wall static pressure. The calculation is seen to yield
very good agreement with the measurements. As shown in Figure 4, the streamwise velocity
predictions �t the measurements of Ref. [4] very well, except for the station z=r0 = 2:5. It is
not surprising because it is well known that most turbulence models cannot scale well in and
around the recirculation zone. The �ow separates from the curved wall in the diverging part
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Figure 5. Distribution of the centreline velocity through the constriction (the experimental
data originated from Deshpande et al. [4]).
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Figure 6. Distribution of the wall static pressure through the constriction (the experimental
data originated from Deshpande et al. [4]).

of the constriction because the severe adverse pressure gradients occur there as the �ow area
increases and the �uid is greatly decelerated. The analogical situation can be found from the
distribution of the centreline velocity in Figure 5 and wall static pressure in Figure 6, namely,
the two distributions are not accurately predicted within the deceleration region compared
with the experimental data. In fact, the present method has produced much closer velocity
pro�les and wall static pressure distribution than many other methods, such as Rastogi [21]
and Zijlema et al. [20] and even a bit better than Melaaen [22] (see his Figure 22).
The comparison between current numerical results and the experimental data and compu-

tational results provided by other researchers illustrates that the current numerical solver is
capable of simulating turbulent �ows in the stenosed arteries, which are usually characterized
by large recirculating vortex, with good accuracy and stability.
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5. RESULTS AND DISCUSSION

It is well known that the blood �ow in the arteries mainly lies in the low Reynolds num-
ber range. The time-average Reynolds number is approximately from 400 to 2000 for the
large arteries in the human bodies. Without stenosis the �ow is usually laminar since a fully
developed pipe �ow does not experience transition to turbulence until the Reynolds number
based on diameter and average �ow speed exceeds about 2300. However, the severe stenosis
can lead to highly disturbed �ow in the downstream of the stenosis. Whether the disturbed
�ows undergo transition to turbulent �ow or remain laminar depends on the di�erent �ow
conditions, such as the �ow rate and the size of stenosis. In fact, the blood �ow through
the severe stenosis is a very complicated �ow in which the large separated bubble will oc-
cur and furthermore the laminar, transitional and turbulent regions often coexist there. More
importantly, when an unknown �ow is to be predicted, often it is di�cult to determine in
advance whether the �ow has become turbulence or not. In the simulation of the blood �ow
through stenosis, therefore, it should be necessary that the chosen turbulence model is capable
of simulating both turbulent �ow and laminar �ow well. The k–! turbulence model seemed
to own this ability which was referred to by Ghalichi [8].
In the present study, the characteristics of the �ows through the single and series stenoses

were investigated. The geometrical con�guration of the stenosis model used in this study
has been shown in Figure 1. For all cases, the constriction ratio of the �rst stenosis was
�xed to 0.5 that corresponds to a 75% area reduction. This percentage is critical in that
the surgical treatment is often based on whether the coronary artery is more than 75%
stenotic [2]. At �rst, the �ows in a tube with single stenosis were considered with the
Reynolds numbers varying from 100 to 4000 which are based on the radius of the tube
having a constant cross section and the axial velocity at the in�ow. The k–! model’s ca-
pability of simulating the laminar �ow �eld was examined further. Then the turbulent �ows
through double stenoses in a tube were studied for various spacing ratios, Reynolds num-
bers and constriction ratios. The dynamics of the �ows describing separation, reattachment,
the formation of recirculation eddy and the distribution of the turbulent kinetic energy were
revealed.
At the upstream inlet, there are not the known velocity pro�les to be found for each

Reynolds number. Therefore, the computational domain for single stenosis is extended with
enough length from z-position −15r0 to 20r0 with the centre of the stenosis located on zero
position in order to eliminate the ill e�ects of inlet and outlet boundary conditions. A 201× 41
grid, which is highly stretched in the height direction, is used in the cases with single stenosis
and gives su�cient resolution as veri�ed by mesh re�nement. For the cases with double
stenoses, the computational domain is further extended to ensure the length of 15r0 before
the �rst stenosis and 20r0 behind the second stenosis, respectively. The grid number is also
increased according to the distance between the double stenoses so as to ensure the same grid
density in the z-direction as that for the cases with single stenosis. The rude computational
grid in the tube with double stenoses is shown in Figure 7.

5.1. Low Reynolds number turbulence modelling through an arterial stenosis

In this study, the relatively low Reynolds numbers are considered with the values from 100 to
4000. The geometrical con�guration of the stenosis model was the same as shown in Figure 1.
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Figure 7. The (crude) computational grid in the tube with double stenoses.

In this case, the model only with one stenosis is considered. The constriction ratio of the �rst
stenosis was set to 0.5 and that of the second stenosis was set to 0.
Figure 13 shows the streamlines of the �ow through arterial stenosis for various Reynolds

numbers that were predicted by the turbulence modelling. It can be seen that a circulation zone
is formed behind the stenosis for all these Reynolds numbers. There is a separation streamline
that divides the �ow into two parts: the circulation �ow �eld behind the stenosis and the
main �ow �eld near the centre of the tube with relatively straight and parallel streamlines.
We know that the vortex length should increase with the Reynolds number increasing in the
state of laminar �ow until it reaches a critical peak value. Beyond the critical value, the �ow
becomes transitional or turbulent and the vortex length should decrease with Re increasing.
From Figure 8, it can be seen that the vortex length for this size of stenosis reaches the
maximum value around Reynolds number 300. Noting that the current Reynolds number is
based on the radius of the tube and the upstream centreline velocity, we can deduce that this
result is consistent with the experimental measurements by Yongchareon [23] that reported
the transitional Reynolds number 400 based on the diameter of the tube and the upstream
mean inlet velocity for a 75% stenosis.
Figure 9 presents the nature of the non-dimensional wall vorticity variation in the ax-

ial direction with di�erent Reynolds numbers. The wall vorticity values, which are related
to the velocity distribution, are of considerable interest to researchers because they are
directly related to the wall shear stress in Newtonian �ows. As shown in Figure 9, the
magnitude of the wall vorticity value increases rapidly when the �ow approaches the steno-
sis and reaches a peak value slightly upstream of the maximum stenosed area. Then the
wall vorticity decreases rapidly and reverses to negative values at a location downstream
of this peak value where separation starts at the wall of the tube. It is clearly observed
that the peak wall vorticity value increases with Reynolds number increasing. The loca-
tion of the peak wall vorticity values tends to shift upstream as the Reynolds number is
increased and then keeps at about 0.2 radii upstream of the maximum stenosed area for
relatively large Reynolds numbers. The negative wall vorticity values give an indication of
the extent of the recirculation region in the stenosed �ow. The negative magnitude of the
wall vorticity value in the recirculation region also increases when the Reynolds number is
increased.
The predicted wall pressure and centreline velocity distribution for Re=100 and 300 are

plotted in Figure 10 in comparison with the results given by laminar-�ow modelling. The
computer code of laminar-�ow modelling, which is just for the simulation of the laminar �ow
without the use of turbulence models, has been validated in Lee et al. [14] and proved to be a
reliable tool for the numerical simulation of laminar �ow. From Figure 10(a) and 10(b), it can
be seen that in this case, k–! turbulence model obtained the same numerical results as those
obtained by the laminar-�ow modelling for Re=100. For so low a Reynolds number, the
�ow is fully laminar. At the same time, for Reynolds number 300, the discrepancy between
the results given by the two modelling can be found from Figure 10(a) and 10(b). Especially,
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Figure 8. The streamlines of turbulent �ows in the tube with single stenosis for the di�erent Reynolds
numbers from 100 to 4000: (a) Re = 100; (b) Re = 200; (c) Re = 300; (d) Re = 400; (e) Re = 500;

(f) Re = 750; (g) Re = 1000; (h) Re = 2000; (i) Re = 4000.

Figure 10(b) shows that the laminar-�ow modelling gives a much slower centreline velocity
recovery prediction in the deceleration zone. As discussed above, this is because that the �ow
distal to the stenosis becomes transitional beyond the Reynolds number 300 and the laminar-
�ow modelling cannot simulate such �ows properly. The laminar-�ow modelling overestimated
the vortex length distal to stenosis when the �ow becomes transitional or turbulent. Therefore,
it can be concluded that k–! model can obtain the accurate numerical results even if the �ow
lies in the laminar �ow range.
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Figure 9. Wall vorticity distribution for di�erent Reynolds numbers.

Figure 10. Comparison between the results by turbulence modelling and those by laminar-�ow
modelling: (a) wall static pressure distribution; (b) centreline velocity distribution.

5.2. The turbulent �ows through series stenoses

Multiple stenoses in diseased vascular tube may occur because the formation of the primary
stenosis may induce more stenoses to form in the downstream region. A study for the laminar
�ows through double stenoses was initially presented by Lee [11]. In the present work, the
�ow behaviour in a double stenosed symmetrical tube was studied numerically. The primary
e�ort is to provide a comprehensive understanding for the characteristics of the turbulent
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Figure 11. The streamlines of turbulent �ows in the stenosed tube at di�erent S=D for Reynolds number
2000: (a) S=D = 1; (b) S=D = 2; (c) S=D = 3; (d) S=D = 4; (e) S=D =∞.

�ow �elds through the series stenoses. In this work, the �ow �elds in the neighbourhood of
vascular stenoses in series were numerically studied in detail for di�erent Reynolds number,
spacing ratios and constriction ratios of the second stenoses. The dynamics of the �ow, which
describes the formation of recirculation eddy and distribution of the turbulent kinetic energy,
were revealed by the streamline, velocity and pressure �elds. The constriction ratio of the
upstream stenosis in a tube was �xed at 0.5 while the downstream stenosis was allowed to
vary from 0.2 to 0.6. The Reynolds number was allowed to vary from 100 to 4000 and the
spacing ratio is considered from 1 to ∞. Actually, the spacing ratio S=D=∞ corresponds to
the case of a single stenosis in a tube.
At �rst, the behaviour of the recirculating �ow region through the double stenoses was

investigated for stenosis spacing ratios of 1 to ∞ with Reynolds number 2000. In this case,
the constriction ratio of the second stenosis was also set to 0.5. The streamline distributions
for this investigation are shown in Figure 11. From this �gure, it can be observed that the
recirculation eddies are formed downstream of each stenosis for di�erent constriction spacing
ratios. There exists a separation streamline that divides the �ow into two regimes one of which
is the recirculating region distal to each stenosis, and the other is the main �ow �eld carrying
the bulk of the �ow near the centre of the tube. When S=D is less than 3, a recirculation
zone �lls the valley region between the two stenoses. The corresponding reattachment point is
located on the front part of the second stenosis. Evidently, the development of the recirculation
zone is restricted by the downstream stenosis. When S=D is larger than 3, a stable recirculation
zone is established between the two stenoses and there is little change for the corresponding
separation and reattachment points. This is because the valley region is enough large and has
less limitation to the formation of the vortex. The size of the recirculation zone distal to the
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Figure 12. The �ow characteristics through the double stenoses at di�erent S=D for the
Reynolds number 2000: (a) wall vorticity distribution; (b) centreline velocity distribution;

(c) centreline disturbance intensity distribution.

second stenosis reduces with S=D increasing. For S=D=4, the recirculation zone distal to the
second stenosis is much smaller than that distal to the �rst stenosis. It can be inferred that the
higher turbulence intensity occurs in the distal of the second stenosis which should be caused
by the superposed e�ect of both stenoses. Therefore, the �rst stenosis has still an important
impact on the �ow �elds near the second stenosis even if the spacing ratio S=D reaches 4.
Figure 12(a), 12(b) and 12(c) shows the distributions of the wall vorticity, centreline veloc-

ity and centreline disturbance intensity for di�erent spacing ratios at Reynolds number 2000,
respectively. Figure 12(a) shows that there are two peak values in wall vorticity distribution
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Figure 13. The streamlines of turbulent �ows in the stenosed tube for di�erent Reynolds number at
S=D = 1: (a) Re = 500; (b) Re = 1000; (c) Re = 2000; (d) Re = 4000.

both of which occur slightly upstream of the two throats, respectively. The peak value of wall
vorticity generated by the �rst stenosis is always greater than that generated by the second
stenosis. However, the downstream peak wall vorticity grows up with S=D increasing. When
S=D reaches 4, the peak wall vorticity near the second stenosis nearly recover to the same
value as that near the �rst stenosis. The recirculating eddy forming between the two stenoses
results in a negative wall vorticity peak occurring proximal to the second stenosis when S=D
is less than 3 while the negative wall vorticity peak does not occur proximal to the second
stenosis with S=D equal to 3 or 4. From Figure 12(b), it can be seen that the maximum
centreline velocity occurs slightly downstream of the stenosis because the formation of a re-
circulation zone behind each stenosis reduces the cross-sectional area of the �ow. Figure 12(c)
presents the distribution of the centreline disturbance intensity that is given by

√
2k in which

k denotes the non-dimensional turbulence kinetic energy. Therefore, the disturbance intensity
can be referred to as an indicator of turbulence intensity. Note that the maximum centreline
disturbance intensity near the second stenosis is always higher than that near the �rst stenosis
for all the spacing ratios. Besides, the downstream peak value of wall vorticity increases with
spacing ratio increasing until the spacing ratio S=D reaches 4. It can be deduced that in this
work, the double stenoses have the strongest superposed e�ects on the downstream �ow �elds
when the distance between the double stenoses is 4D. Lee [11] showed that for a laminar
double-stenosed �ow, the �rst stenosis has a diminishing e�ect on the �ow �elds distal to the
second stenosis with the distance between the two stenoses increasing. The characteristics of
the turbulent �ow �elds are evidently di�erent from those of the laminar �ow �elds in the
stenosed tubes.
For a given spacing ratio and a constriction ratio of the second stenosis, the typical stream-

lines at Reynolds numbers from 500 to 4000 are shown in Figure 13. In this case, in order
to study the in�uence of Reynolds number on the �ow �elds through the double stenoses,
the spacing ratio and constriction ratio of the second stenosis were �xed to 1 and 0.5,
respectively. Beyond Reynolds number 500, the �ows distal to the stenosis are not in laminar
range and therefore the length of the recirculation zone behind the stenosis become smaller
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Figure 14. The �ow characteristics through the double stenoses for di�erent Reynolds
numbers at S=D = 1: (a) wall vorticity distribution; (b) centreline velocity distribution;

(c) centreline disturbance intensity distribution.

with Reynolds number increasing. A recirculation zone is full of the valley between the two
stenoses for S=D=1, with little changes to the separation and reattachment points as the
Reynolds number is increased. From Figure 14(a), it can be seen that the two peak values
of the wall vorticity grows up rapidly with the Reynolds number increasing. As mentioned
previously, the peak value of wall vorticity generated by the second stenosis is usually much
less than that generated by the �rst stenosis. Figure 14(a) shows that the di�erences between
the two peak values of wall vorticity generated by double stenoses also increase with the
Reynolds number increasing. On the contrary, it can be seen from Figure 14(b) that the value
of the non-dimensional centreline velocity is slightly decreasing with the Reynolds number
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Figure 15. The streamlines of turbulent �ows in the stenosed tube for di�erent constriction ratios of the
second stenosis at Re = 2000: (a) c2 = 0:2; (b) c2 = 0:5; (c) c2 = 0:6.

increasing. This may be due to two reasons one of which is that in transitional or turbulent
�ows, the higher Reynolds number can lead to a smaller recirculation zone distal to each
stenosis that has less e�ect on the cross-sectional area of the �ow. Another reason is that
the fully developed turbulent �ow for the higher Reynolds number has the blunter velocity
pro�les in the cross sections of the �ow. Figure 14(c) shows that the peak value of the cen-
treline disturbance intensity goes up with the Reynolds number increasing. Besides, it can be
noticed that the distance between the location of peak disturbance intensity downstream of
the stenosis and the stenosis decreases with the Reynolds number increasing.
With c1 set to 0.5, the characteristics of the recirculation eddy formed downstream of each

stenosis were studied with the constriction ratio c2 of the second stenoses varying from 0.2
to 0.6. In this case, the spacing ratios and Reynolds numbers were �xed to 1 and 2000,
respectively. Figure 15 presents the streamline distribution for di�erent constriction ratios.
Figure 16(a), 16(b) and 16(c) shows the wall vorticity, centreline velocity and centreline
disturbance intensity for di�erent constriction ratios of the second stenoses, respectively. From
Figure 15, it was observed that for c1 = 0.5 and c2 = 0.2, the circulation eddy between the
two stenoses spread beyond the second stenosis, merging with the eddy that formed behind
the second stenosis. This �ow phenomenon has a signi�cant in�uence of the downstream wall
vorticity characteristics. Usually the peak wall vorticity near the stenosis should be much more
than zero. When c2 = 0.2, however, the peak wall vorticity near the second stenosis does
not appear and the corresponding value is unexpectedly less than zero. It can be found from
Figure 16(a) that the peak wall vorticity caused by the second stenosis is lower than that
caused by the �rst stenosis when c26c1. In contrast, the peak wall vorticity generated by the
second stenosis with c2 = 0.6 increases dramatically and is much higher than that generated
by the �rst stenosis with c2 = 0.5. From Figure 16(b), it can be seen that the peak centreline
velocity distal to the second stenosis with c2 = 0.6 is also much higher than those distal to
the second stenosis with c2 = 0:5 and 0.2. The same trend can be observed in the pro�les of
the centreline disturbance intensity distribution in Figure 16(c). At the same time, it can be
found that the di�erences between the �ow behaviour for c2 = 0:5 and that for c2 = 0:2 are not
so large although the di�erence of the corresponding cross-sectional areas between c2 = 0:5
and 0:2 is much larger than that between c2 = 0:5 and 0:6. Therefore, it can be concluded
that c=0:5 can be selected as the accepted critical value of stenosis that is the degree of
vessel block beyond which there are abrupt changes in the �ow properties. Actually, for artery
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Figure 16. The �ow characteristics through the double stenoses for di�erent constriction
ratios at Re = 2000: (a) wall vorticity distribution; (b) centreline velocity distribution;

(c) centreline disturbance intensity distribution.

disease, the clinic treatment is often based on whether the artery is more than 75% stenotic
which corresponds to c=0:5.
With both c1 and c2 set to 0.5, the reattachment points of the recirculation eddies formed

downstream of each of the stenoses for di�erent stenosis spacing ratios are shown in Figure 17.
The corresponding separation points are not shown here because there is little change for them
with Reynolds number varying. In the �ows through the double stenoses, a stable recirculation
zone is established between the two stenoses and the location of the corresponding reattach-
ment point almost does not change. Therefore, here we mainly focus on the recirculation zone
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Figure 17. The locations of the reattachment points of the recirculation zones distal to the
stenoses for various Reynolds numbers when c1 = c2 = 0:5.

distal to the second stenosis or distal to the single stenosis. Figure 17 shows the variation
of the reattachment points with the Reynolds number when S=D is set to 1, 3 and ∞. The
prediction by laminar-�ow modelling is also plotted in this �gure with the Reynolds number
less than 300 for S=D=∞. Again the excellent agreement is found between the numerical
predictions by laminar-�ow modelling and turbulence modelling in the laminar �ow range.
At the vicinity of the critical Reynolds number, the locations of reattachment points change
rapidly with the Reynolds number varying. When Reynolds number is below its critical value,
the �ow distal to the stenosis is in a state of laminar �ow and the reattachment points rapidly
spread downstream as the Reynolds number increasing. When Reynolds number is larger than
its critical value, the �ow distal to stenosis becomes transitional or turbulent and the corre-
sponding reattachment points rapidly move upstream until the Reynolds number reaches 1000.
Beyond the Reynolds number 1000, the locations of the reattachment points do not change so
evidently only with a little upstream movement. Figure 17 shows that the critical Reynolds
number for the �ows through single stenoses is about 300 as mentioned in the Section 5.1. In
contrast, it can be observed from Figure 17 that the critical Reynolds numbers for the �ows
through double stenoses are much less than 300 and approach to 200. This means that the
more stenoses can result in a lower critical Reynolds number and lead to an earlier occurrence
of turbulence for the stenotic �ows.

6. CONCLUSION

In the present study, we have further veri�ed that in the laminar �ow region, the numerical
predictions by k–! turbulence model matched those by the laminar �ow model very well.
This suggests that the k–! turbulence model is not only suitable for the prediction of the low
Reynolds number turbulent stenotic �ow, but also suitable for the prediction of laminar �ow.
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Using k–! model, we successfully predicted the critical Reynolds number at which the �ows
distal to a stenosis becomes transitional or turbulent.
The numerical solutions to the �ow �elds through double axisymmetric bell-shaped stenoses

in a circular tube were obtained for a Reynolds number range 100–4000 with di�erent con-
striction ratios and spacing ratios of the second stenosis. The e�ect of the series stenoses
on �ow characteristics such as streamlines, wall vorticity, centreline velocity and disturbance
intensity as the �ows passes through two adjacent vascular stenoses are numerically investi-
gated. It was observed that the characteristics of the turbulent �ow �elds are greatly di�erent
from those of the laminar �ow �elds in the stenosed tubes. The extent of the spreading of the
recirculation region from the �rst stenosis and its e�ects on the second stenosis depend on
the stenosis spacing ratio, constriction ratio and the �ow Reynolds number. The recirculation
zone formed downstream of the �rst stenosis has a relatively weak e�ect on the vortex pro-
duced by the stenosis downstream with S=D increasing. However, the double stenoses have
the strongest superposed e�ects on the distribution of turbulence intensity in the downstream
region when the spacing ratio S=D reaches 4. Generally, the peak values of the wall vorticity
and the centreline disturbance intensity both grow up with the Reynolds number increasing.
For c1 = 0:5 with c26c1, the maximum value of wall vorticity generated by the second steno-
sis is always less than that generated by the �rst stenosis. However, the maximum centreline
velocity and disturbance intensity at the second stenosis are higher than those at the �rst
stenosis. In contrast, for c1 = 0:5 with c2 = 0:6, the maximum values at the second stenosis
are dramatically higher than those at the �rst stenosis whether for centreline velocity and
disturbance intensity or for wall vorticity. The present study shows that the more stenoses can
result in a lower critical Reynolds number that means an earlier occurrence of turbulence for
the stenotic �ows.
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